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Abstract
The lattice spin model, with nearest-neighbour ferromagnetic exchange and
dipolar interaction, is studied by the method of time series for observables based
on cluster configurations and associated partitions, such as Shannon entropy
or Hamming and Rohlin distances. Previous results based on the two-peaks
shape of the specific heat, suggested the existence of two possible transitions.
By the analysis of the Shannon entropy and related indicators we obtain
strong indications that the first one is a true phase transition, corresponding
to a particular melting process of oriented domains, where coloured noise is
present almost independently of true fractality. The second one, in contrast,
seems not to be a true transition. It may be ascribed to a smooth balancing
between two geometrical effects: a progressive fragmentation of the big clusters
(possibly creating fractals) and the slow onset of a small cluster chaotic phase.
Comparison with the nearest-neighbour Ising ferromagnetic system reveals a
substantial difference in the cluster geometrical properties of the two models
and in their critical behaviour.

PACS numbers: 05.50.+q, 05.70.Fh, 75.10.−b

1. Introduction

There is a growing literature illustrating the conceptual and practical relevance of two-
dimensional (2D) systems with long-range interactions (see [1, 2] and references therein).
The model we consider here is an Ising model on a square lattice, with both nearest-neighbour
(NN) ferromagnetic exchange interaction, and long-range dipolar interactions decaying as r−3

among all pairs in the lattice (r being the distance). Spins are supposed to be perpendicular to
the lattice plane. We shall denote PFD such a perpendicular (P) ferromagnetic (F) dipolar (D)
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system. This model shows a very interesting thermodynamic behaviour that results, at low
temperature, in the presence of regularly shaped stripes of upward and downward spins, and,
at increasing temperature, in a complex onset of disorder until the usual random paramagnetic
phase occurs. It has been supposed that one or more transitions could take place in the region
between the ordered and paramagnetic phases. In particular, Ifti and coworkers [2] studied
by numerical Monte Carlo (MC) simulations the behaviour of specific heat, obtaining a curve
with a sharp peak at temperature T1 and a broad maximum in the region at T2 ∼ 2T1. The
authors suggested the existence of two possible phase transitions, the former related to the
melting of the stripes, the latter to the occurrence of the paramagnetic phase. We shall study
this item by MC simulation introducing a new method of investigation that seems to disprove
this conjecture, in favour of a single-phase transition.

Theoretical investigations on the behaviour of stripe domains can be found, e.g., in
[3, 4]. Moreover, there are studies on related systems, generally performed by more traditional
methods, that could be used for partial comparison and checks. For instance, Abanov et al [5]
use an analytical approach to study a Heisenberg spin system, fitting demands in describing
thin films. Of course, such a system cannot be directly compared to our model, except for very
particular values of parameters or in certain limits. The reorientation transition, for instance,
cannot be seen by definition in the PFD system. For the same reasons, also the Heisenberg
system studied by MacIsaac et al via MC simulations [6] leads to conclusions which have only
a limited overlap with our results. However, for suitable values of certain parameters, all these
authors deal with striped planar domains melting into an orientationally disordered phase
(smectic-tetragonal transition), and in this case their observations are perfectly compatible
with the results we obtain by our ‘geometric’ method.

The same applies to the smectic-tetragonal transition observed by Arlett et al [7], who
studied the PFD model in the presence of an external field by MC simulations.

Quite recently, the PFD model studied here has been investigated by Cannas et al [8] using
Monte Carlo simulations to evaluate the order of the smectic-tetragonal transition, expected
to be first order on the basis of the analytic results of Abanov et al [5]. They conclude that
the transition is indeed first order, implying that the PFD and the NN Ising systems show very
different critical properties, in agreement with our results.

Since the pioneering works by Peierls and Griffith [9], the shape and distribution of the
magnetic clusters have been suggested to be a significant geometrical signature of 2D models.
The problem is to give quantitative estimates and qualitative connections, besides visual
inspection, between the cluster features and the thermodynamic behaviour of the system.
To this end, we shall extend to PFD an analysis already tested in other contexts, such as
microcanonical and canonical Ising models, or self-organized criticality (see [10–12]). The
basic tool is a map between the space C ≡ C(M) of configurations on the lattice M and a
‘partition space’ Z ≡ Z(M), defined by the correspondence between homogeneous connected
clusters and subsets of the lattice. When a dynamical simulation is performed on M, we look
for possible meaningful relations between geometrical and dynamical features of quantities in
C and Z and the physically relevant (thermodynamic) properties. This may be done by a time
series analysis of observables related to the metric properties of C and Z . The method is very
general, and its efficiency consists precisely in giving indications not exclusively tailored on
the model, making possible comparisons with other systems and other dynamics.

The Shannon entropy, for instance, points out the order–disorder transition by a sudden
change of its slope as a function of temperature. Since the entropy continuously depends on
the cluster measure distribution, this transition may be read as a topological breakdown driven
by channels joining the stripped domains of the ground state. In contrast, the order–disorder
transition in the NN Ising model (studied in [11]) is driven by a fractal fragmentation of the



Metric features of a dipolar model 11733

clusters, leading to a sharp increase of entropy. Standard deviations, in both models, develop a
singularity. It seems therefore that the analysis of this quantity can give information about the
kind of incoming disorder. Further information can be obtained from time series of distances
in C(M) and Z(M), from their standard deviation and from the analysis of power spectra,
showing the dependence of ‘colour exponents’ on temperature.

In addition, for PFD, a careful examination of clusters proves to be useful in recovering,
along new and more efficient lines, parameters and criteria previously introduced in
[1, 2]. Notation, definitions and elementary properties of C(M) and Z(M), as well as
Shannon entropy and Hamming and Rohlin distances, are recalled in the appendix, with
some mathematical details.

2. The model

The Hamiltonian of the 2D perpendicular Ising ferromagnet with dipolar interactions (PFD
model) is

H = −J
∑
〈k,m〉

sksm + g
∑
m�=k

sksm

r3
km

, (1)

where sk is the usual spin variable assuming values ±1 in the lattice M of size N = L × L.
The first sum is restricted to NN pairs, while the second sum is over all pairs. The distance r is
between all sites, taking into account also sites of periodically iterated copies of the lattice, up
to the convergence of such sums [13]. The correspondence with the lattice M equipped with
the binary alphabet K ≡ {0, 1} and knots labelled by a couple of indices running from 1 to L is
obvious. Starting from such M and K, the mathematical apparatus described in the appendix
can be developed. In particular, one may introduce the configuration space C provided with
the Hamming distance dH , and the cluster partition space Z with the Rohlin distance dR .

The exchange constant J in (1) and the temperature T will be given in g units. A well
established result (see [1, 2]) is that, for J > 0.854 the ground state is characterized by striped
domains of up and down spins, with a trivial degeneracy corresponding to their vertical or
horizontal orientation. The stripe width h increases as J . We shall assume the value J = 8.9,
corresponding to h = 8 lattice spacings.

The specific heat CV versus temperature T is shown in figure 1 for L = 16, 32 and 64.
Plots for the higher Ls have been shifted for clarity (they all start from 0 at T = 2). Note that
the peak at T = T1 � 5 is absent for L = 16, when the ground state has only two stripes,
while it is increasingly clear and sharp for L = 32 and 64, confirming the results shown in
figure 3 of reference [1]. There is a second peak, a broad maximum, at T = T2 � 10, which
remains substantially unchanged at growing L [1, 2]. The temperature interval of the first
peak is denoted as �T1. In the range 0 < T < 2, CV does not move from 0 and stripes
remain very stable. For 2 < T < T1, where CV shows a sudden rise, the jagged outline of
the stripe takes place gradually. For T1 < T < T2 stripes are replaced by two big clusters,
with unstable appearance of small fragments (‘islands’). The relevance (in number and size)
of such islands increases until the breakdown of big clusters occurs, approaching T2. Finally,
there is a progressive fragmentation into smaller and smaller clusters. However, up to T = 16,
completely chaotic configurations do not occur. A short summary of this process appears in
figure 2. In order to clarify the nature of these phases, we study the link between geometrical
and dynamical behaviour in the whole range of temperatures.

We recall that similar methods have been previously used [11] to investigate the Ising
model (i.e., g = 0 and J = 1 in (1)). As the phase transition is approached, at temperature
Tc, a sudden onset of fractal structure for the magnetization cluster distribution occurs, with a
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Figure 1. Specific heat CV for L = 16, 32, 64 from below. Plots for L = 32 and 64 have been
shifted by +0.1 and +0.2, respectively. Mean values over four (L = 16, 32) or two (L = 64) initial
conditions.

singular behaviour of parameters like Shannon entropy or Hamming and Rohlin distances. For
instance, the standard deviation of the Shannon entropy (see the appendix) along the orbit shows
a very neat peak, proving the onset of time instability for the configuration orbit at Tc [11].
All this was independent of the evolution rule (both Metropolis and deterministic dynamics
were used). One wonders whether the presence of a competitive long-range interaction in the
PFD model will confirm or destroy this pattern.

The question is furtherly justified by the conjecture that in a purely dipolar model, long-
range interactions do not influence the universality class of the Ising antiferromagnet [18]. Is
it reasonable to extend this conjecture to the relation between the PFD model and the Ising
ferromagnet? The problem is not trivial since, in such a case, interactions are competitive.
We shall try to answer on the basis of geometrical considerations.

3. Numerical experiments

In our Monte Carlo (MC) simulations, we shall adopt the well-known method based on
Ewald sums [13]. This consists in considering a very large system which can be refolded
into a smaller one with a renormalized coupling constant. The evolution rule is the standard
Metropolis algorithm [19], where the temperature is controlled by the flip probability.

Other general data about numerical experiments are the following:

• Size: simulations have been mostly performed at L = 32 and 64, with many consistency
checks. Of course, larger values of L would be expedient, in particular to control finite
size effects. However, not only dipolar interactions imply a sudden rise of computing
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(a) (b)

(c) (d )

Figure 2. For L = 64, configurations (a), (b), (c), and (d) correspond to temperatures T = 3, 6, 9
and 14, respectively.

time, but there are prohibitive difficulties in handling data at increasing L for entropy and
Rohlin distances (see the appendix).

• Temperature range: simulations have been performed for 2 < T < 16, with checks for
T � 2. The main range has been sampled in two ways: 100 values with several initial
conditions (i.c.), or 500 values with two i.c. The two approaches led to consistent results.

• Initial conditions and thermalization: at T � 2 (ordered phase) random i.c. have been
used. In the main range, the simulation at temperature T + δT uses, as starting
configuration, the last thermalized configuration at temperature T. Moreover, at each
temperature, 104 MC steps are disregarded to reach equilibrium.

• Time average interval: τ = 2 × 104 steps after thermalization that ensures a good
stabilization. Therefore, for a time series X ≡ {xk}, k = 0, . . . , τ , the computed time
average

〈x〉τ = 1

τ + 1

τ∑
k=0

xk (2)

(i.e., the usual MC thermal average) will be simply noted 〈x〉, as in the limit τ → ∞.
An example of time series for Shannon entropy is given in figure 3, with the histogram of
occurrences.

A way to look at the meaning of time averages and their reliability consists in evaluating
the correlations: for a time series X ≡ {xk}, k = 0, . . . , τ , where 〈x〉 is the mean value, the
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Figure 3. Entropy time series (above) and histogram of occurrences (below), for T = 5.15 and
L = 32.

self-correlation coefficient Corr(X,m) is defined as usual (see, e.g., [20])

Corr(X,m) =
∑τ−m

k=0 (xk+m − 〈x〉)(xk − 〈x〉)∑τ
k=0(xk − 〈x〉)2

. (3)

This coefficient displays how long an evolving quantity keeps the memory of its past, measured
by the lag m. It indicates therefore how a time (or thermal) average is built up. For instance, in
figure 4 the self-correlation Corr(H,m) for the entropy time series is shown versus temperature
for different lags. Qualitatively similar results hold for the Rohlin and Hamming distances.
Even at m = 1000 the self-correlation is remarkable around T1. The valley for 2 < T < T1

may be interpreted by recalling that, when the stripe boundaries start a certain mobility,
fluctuations around the mean value of entropy are random for all practical purposes, and
differences between small numbers in formula (3) amplify the randomness of their queues.
Some experiments for T < 2, where high self-correlation due to the freezing is expected,
show irregular fluctuations, likely a spurious effect of the same origin: averages over a great
number of i.c. would smooth down these fluctuations. The overall information from figure 4
is that Corr(H,m) is very sensitive to the transition at T1, where there is a long memory effect.
This effect rapidly vanishes elsewhere, particularly at increasing temperature.

4. Results

Let us now investigate the thermal behaviour of ‘geometrical’ quantities like Shannon entropy,
Rohlin distance dR , Hamming distance dH , their standard deviations (SD) and spectral
properties.

Shannon entropy versus temperature is shown in figure 5. At low temperature, stable
stripes of width h = 8 lead correctly to H = ln 4 for L = 32 and H = ln 8 for L = 64.
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Figure 4. Entropy self-correlation for single runs versus temperature, at lag m = 1, 10, 100, 1000
and L = 32.

Figure 5. Time averaged entropy, for L = 32 (circles) and L = 64 (triangles), mean values over
four i.c.
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Figure 6. Entropy standard deviation in time (ESD) versus temperature, same parameters and
markers as in figure 5.

The transition around T1 is quite clear. More precisely, when stripes begin to melt into two
connected macro clusters, a drop is seen compatible with appearance of small spots (spins
pointing in the opposite direction with respect to the background). In other terms, the Shannon
entropy gives a quantitative evidence to the breakdown of the ground-state-connected domains,
which discontinuously changes the cluster measure distribution by joining stripes into macro
clusters. The example of figure 3 clearly refers to this intermediate situation, when stripes
still exist during long time intervals in an almost steady status with small oscillations at the
borders, but may also suddenly melt or separate, modifying the cluster measures.

The regular increase of H for T > 6 indicates a progressive fragmentation of the macro
clusters, or the growing relevance of islands, but nothing can be said about T2. As to the
nature of this fragmentation, the onset of some kind of fractality for greater L cannot be
excluded. However, for comparison, we recall that the observed fractal fragmentation around
the transition temperature in the NN Ising ferromagnet gives a sudden change of concavity,
with vertical inflexion point, exactly at Tc. In conclusion, where the transition for PFD is
confirmed (at T1), there is no fractality, and where fractality could be possible (around T2)
there is no transition: in both cases the difference with respect to the NN Ising model is clear.

Also the entropy standard deviations (or ESD), calculated for each temperature along the
orbits, point out a critical behaviour around T1, followed by a regular behaviour for greater
T, as shown in figure 6. The peak at T1 may be interpreted as due to time instability in
the phase of melting stripes, corresponding indeed to intermittent behaviour in the melting
process of clusters (as illustrated by figure 3). This phase is followed by the stabilization of
the macro clusters (relative minimum of ESD). A new source of time instability is due to the
cluster fragmentation, with appearance of islands, but once again this processes is smooth
with respect to temperature, and no new transition can be recognized at T2.
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Figure 7. Rohlin distance standard deviation (RSD) in time versus temperature, data for L = 16
(squares), L = 32 (circles) and L = 64 (triangles), four i.c.

Figure 7 shows the Rohlin distance standard deviation (or RSD) versus temperature for
three lattice sizes. The transition at T1 is quite unclear for L = 16 (remember however the
CV -plot for L = 16 in figure 1) but a singularity (discontinuity of the first derivative) clearly
develops for increasing L, confirming the relevance of T1. Moreover, a maximum occurs at a
temperature not far from T2, where the RSD shows an inflexion point. It is noteworthy that the
value of the maximum is independent of L. When compared to the behaviour of the second
CV peak, the behaviour of the RSD maxima and inflexion points versus L is surely different.
Therefore, no correlation with a new transition can be recognized. At fixed L, we may see the
maximum of RSD in figure 7 as the watershed between two opposite tendencies: (1) increase
of time instability, due to the rising importance of islands with respect to macro clusters
and (2) the saturation of the phenomenon when macro clusters give up and the ensemble of
disordered islands fill the lattice. In such a slow approach to chaoticity, the RSD decreases, as
expected on the basis of previous experience on the NN Ising model [11], where the RSD had
maximum just after Tc, and this maximum was a balancing point between fractal and chaotic
configurations. In the present case, it would be hard to point out effective fractality because
of small lattice sizes. As already noted with entropy, a fractal phase during the fragmentation
of macro clusters and the growth of islands remains only a reasonable conjecture, compatible
with the observed behaviour of RSD. Anyway, the Rohlin SD is the only quantity suggesting
some remote resemblance between T2 and Tc, in PFD and NN Ising systems, respectively. For
the same reason, however, it contributes to exclude any resemblance between T1 and Tc.

The Hamming distance is insensitive to the cluster shape, therefore it is not surprising that
this kind of phenomena does not appear in its standard deviation (HSD), as shown in figure 8.
In contrast, the occurrence of a singularity at T1 may be sensed again for increasing L. Data in
time series have been rescaled by L, leading to a good data collapse after T1. This is consistent
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Figure 8. Hamming distance standard deviation (HSD) for PFD model, with L = 16, 32, 64. The
time series have been rescaled by L. Same parameters and markers as in figure 7.

with the fact that, in the same range of temperatures, mean values rescale with N. Moreover,
such a data collapse seems to exclude that something may occur at T2 for greater L.

A comparison with the corresponding behaviour in the Ising ferromagnet (figure 9)
is instructive: there, the L-scaling behaviour occurs indeed everywhere except around the
transition temperature Tc, where also there is an incoming cusp that asymptotically in L seems
to get an infinite derivative (in this case we reach L = 100). For both models, HSD behave
qualitatively as the standard deviations of the total cluster perimeters (we omit to report
figures). Since the perimeter SD is due to boundaries fluctuations, such a coincidence seems
to indicate a sensitivity of the Hamming distance to the boundaries instability. A parallelism
of this kind is not obvious, considering the different role of boundaries: because of long-range
interactions; indeed, the evolution rule in PFD model does not assign to borders the same
importance as in Ising model.

Spectral features: by fast Fourier transform on time series, we obtained power spectra (a
typical example for entropy is shown in figure 10). As it is well known, there is no general
dynamical theory on the presence of coloured noise in signal sources, in front of an extremely
rich phenomenology (see, e.g., [20, 21]). In our context, experience on comparable time series
for other models (Ising ferromagnet and SOC) confirms the widely discussed empirical link
between fractality and coloured noise, provided that the lattice size is sufficient to achieve a
reasonable fractality [10–12]. Therefore, in the present case, such a link remains conjectural,
but this makes the observation of the noise even more interesting.

As a general feature, for all observables there is in fact the expected tendency to chaoticity
as T increases, but at T = 16 a genuine white noise regime is not yet achieved. This agrees
with the disordered but not completely chaotic aspect of fragmented clusters at the same
temperature. Thus, in the whole range of interest, coloured noise ωα, α < 0, is the rule.
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Figure 11. Colour exponents α from entropy spectra, four distinct i.c. at each temperature.

This exponent can be obtained as the value of the angular coefficient from the linear fit in
the log–log plot of the power spectrum. For instance, figure 10 shows the log–log plot of
the power spectrum of the Shannon entropy for T = 5.4. The linear fit gives α = −1.54.
A simple way to get information on the dependence of the noise is to plot the exponent α

versus T. For entropy spectra, the result is exhibited in figure 11. Here, we preferred not to
average over different i.c., in order to stress the dispersion of values in the critical interval �T1.
As in figure 4, for very low temperatures the average over several i.c. would smooth down
spurious fluctuations. Moreover, for a correct interpretations of such fluctuations, one should
also consider that, for T from 2 to 16, there is a growth of several orders in the magnitude of
the spectra. The maximum spread coincides with the beginning of the interval �T1. Then,
after the well (coinciding with the onset of macro clusters) there is the expected slow growth,
up to values close to 0 from below. It is instructive to consider the analogous figure of the
spectral exponent for the NN Ising model (figure 12). This figure does not exhibit any burst of
instability around the critical temperature Tc = 2.27J , where a phase transition characterized
by a fractal structure of clusters occurs [11]. Moreover, the minimum is higher (−1.2 versus
−1.6). The qualitative difference between cluster geometry is therefore well reflected in
figures 11–12. More precisely, in the present case, the slow dynamics of small deformation of
stripes (α � −1.5) is followed by a substantial acceleration when domains start to merge. At
T1, temperature marking the appearance of very unstable stripes, dynamics slows down again.
This pattern is confirmed also by figure 4, by identifying slow/fast dynamics with long/short
memory of correlations. Above T1, the growth towards white noise is continuous: it does not
give any particular relevance to T2, possibly apart from a pseudo-fractality of very different
nature with respect to the fractality found in NN Ising model. The exponents to compare are
indeed α � −1.2 (Ising) versus α � −0.4 (PFD). We stress again that this comparison is not
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Figure 12. Colour exponents from entropy spectra, Ising system, four distinct i.c. at each
temperature.

between exponents at comparable temperatures, i.e., at the transition, but between the ‘more
fractal patterns’ in the two models (effective in a case, virtual in the other).

Some additional considerations on the thermal aspects of previous results could be useful.
As it is well known, the specific heat may be calculated as

CV = 〈H 2〉 − 〈H 〉2

NkBT 2
, (4)

kB being the Boltzmann constant (here kB = 1). Labelling the exchange and the dipolar
contributes in the Hamiltonian (1) by indices e and d, respectively, we write

CV =
〈
H 2

e

〉 − 〈He〉2

NkBT 2
+

〈
H 2

d

〉 − 〈Hd〉2

NkBT 2
+ 2

〈HeHd〉 − 〈He〉〈Hd〉
NkBT 2

. (5)

The first two terms in the rhs, which we denote by Ce and Cd , have the form of a specific heat
for the exchange and dipolar Hamiltonian, respectively (of course, they are not!). The last
term, say Ced , is a sort of correlation. Since CV = Ce + Cd + Ced , one may look for the origin
of peaks at T1 and T2 by observing separately Ce + Cd and Ced . Actually, both these quantities
give neat evidence of a peak at T1, and no evidence at all of a peak at T2, as shown in figure 13,
where a close correlation between Ce + Cd and Ced appears in the whole range. Moreover,
the ratio (Ce + Cd)/Ced , given in figure 14, indicates quite clearly that there exist two distinct
regimes of proportionality, T1 being once again their turning point.

All conspire in saying that T2 has no thermodynamic relevance. This conclusion
completely agrees with the geometrical characterization suggested by entropy and distances:
the maximum of CV at T2 seems to indicate a balancing point between growing and decreasing
contributes related to the smooth fragmentation process of clusters.
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Figure 14. Ratio (Ce + Cd)/Ced , same parameters as in figure 13.
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Figure 15. Parameter O, or first domain order parameter, for L = 32 (circles) and L = 64
(triangles), mean values over four i.c.

5. Previous results revisited

We recall that previous authors, in order to evaluate the orientational symmetry of the striped
states, introduced two domain order parameters, O and η.

In the dual lattice, let nh and nv be the number of horizontal and vertical sides along the
cluster boundaries (n = nh + nv is therefore the total border length, or total perimeter). The
first parameter O, introduced in [1], is the time averaged difference

O =
〈
nh − nv

n

〉
. (6)

It estimates the deviation from an isotropic distribution of sides in the clusters. In the purely
striped domain, there are only horizontal or vertical sides, so that O = ±1 (depending on
the initial orientation), while the parameter must be 0 in an isotropic configuration. Isotropy
is expected to hold not only in the disordered phase at high temperature, but just after the
stripes breakdown. What one actually sees in figure 15, starting, e.g., with O = 1 for T < 2,
is that the parameter weakly decreases up to temperatures where a preferential orientation
clearly persists. But the subsequent transition to 0, just around T1, is not smooth at all,
presenting a remarkable oscillation of sign, as if the remainder of the stripes suddenly changed
orientation for long time intervals. For all L, the sign oscillation interval coincides with the
peak interval �T1 of the specific heat. For both CV and O, this interval is expected to narrow
in the thermodynamic limit. Except for these fluctuations around the value zero in the critical
region, figure 15 recovers figure 4 of [1], apparently built up with the absolute values of the
parameter. Even if such inversions were a finite size effect, as suggested by the amplitude of
oscillations decreasing with L, this attitude is a remarkable signature of the way the stripes
collapse in the transition region. This oscillatory phenomenon could be analogous to the
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magnetization inversion observed in the NN Ising model, for finite size lattices, when fractal
patterns begin to take place approaching the transition temperature. Note that in PFD this
orientation incertitude takes place mostly after T1, in a range of temperatures where stripes
are still melting into two big clusters with small fragments, as shown by the entropy.

We recovered also the parameter η. Assuming si,j ≡ sk the spin variable, η, is defined by
formula (2) in [2], i.e.,

η = 1

N

〈∣∣∣∣∣
∑

j

∣∣∣∣∣
∑

i

si,j

∣∣∣∣∣ −
∑

i

∣∣∣∣∣
∑

j

si,j

∣∣∣∣∣
∣∣∣∣∣
〉

. (7)

Also this parameter is proven to be effective in detecting the first temperature (see figure 3 in
[2]), but it cannot capture the oscillatory phenomenon revealed by O.

6. Conclusions

The observation of cluster dynamics and the related statistical properties give clear evidence
for the following points:

1. The peak for CV at T1 is correlated to a melting process of stripes without any occurrence
of fractality, a behaviour quite different with respect to the NN Ising model.

2. Some analogy between the two models seems to exist in the attitude to sudden inversion
of stripe orientation or magnetization, respectively, as finite size effects. Such an analogy
does not imply any similitude in the cluster geometry: in one case, the orientation
anisotropy keeps a memory of the stripped structure, while in the other case the inversion
of magnetization has to do with the onset of fractality at Tc.

3. Coloured noise is present in both models at their transitions (figures 11–12), in a quite
different fashion: in the PFD case, with a wide range of values as a consequence of
intermittent melting phenomena with small perturbations at boundaries (see, e.g., figure 3),
making spectra at T1 still dependent on i.c. (this intermittency may be read also in
the entropy standard deviation); in Ising, as a counterpart of fractal dynamics, almost
independent of i.c. at Tc.

4. Standard deviations for Rohlin and Hamming distances are different too in PFD and Ising
systems, particularly in the comparison of T1 and Tc. However, in both models, the
Hamming SD have the same scaling behaviour of the total perimeter.

5. As to the second peak shown in the CV diagram of PFD, only the SD of the Rohlin
distance presents some peculiar behaviour in the neighbours of T2. There is also a weak
resemblance with the behaviour of the same quantity in the neighbours of Tc for the NN
Ising system. It seems that dynamical regime at such temperatures corresponds to the
fragmentation of macro clusters. Therefore, for PFD, only here there is a possibility for
fractal configurations, even if not detectable at the values of L accessible to computations.
This is by far too little to conjecture a second transition at T2.

The conclusion is twofold: on the basis of our geometric and dynamical indicators, T2

could hardly be recognized as a transition temperature at all. In contrast, a genuine phase
transition seems to take place at T1. Moreover, we have a good evidence from geometry that
the NN Ising ferromagnetic transition at Tc and the PFD transition at T1 are of different nature:
the former is confirmed to be a second-order transition, as it is well known, the latter seems to
be a first-order one. There is not a rigorous proof, but we support this conjecture on the basis
of the coherence of the geometrical signature. Consequently, we cannot extend to our case
the conjecture proposed in [18] on the irrelevance of the long-range interactions for the Ising
antiferromagnet class of universality.
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This conclusion perfectly agrees with very recent results obtained by Cannas et al [8]:
their numerical experiments corroborated by the analysis of a continuum version of the system
confirm the first-order character of the transition at T1 for 2 < J/g < 6.
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Appendix

Let M be a L × L square lattice, where knots (i, j) assume values in an alphabet K. A state
or configuration on M is a whole set a = {ai,j }, ai,j ∈ K. It is an element of C = C(M), the
set of all |K|L×L possible states of the lattice. For instance, K = {0, 1}, fits the description of
Ising-like systems. The dual lattice (we shall equally denote M) is a L × L set of square cells
corresponding to the knots.

When the alphabet K itself is a metric space (e.g., a numerical set with the usual |x − y|
distance), one can consider in C(M) the Hamming distance dH which, for configurations a
and b, is defined by the functional

dH (a, b) =
∑
i,j

|bi,j − ai,j |. (A1)

We stress that the Hamming distance is sensitive only to actual values of corresponding knots,
not to their distribution or neighbourhood.

A path, is a sequence of ‘near’ knots, equivalent to a sequence of cells having common
sides in the dual description. A connected cluster is a set of knots with the same value in K
which are connected by a path. In the dual lattice, clusters are connected but not necessarily
simply connected sets, made up of square cells. Since every cell belongs to a single cluster,
clusters Ak are disjoint subsets of M and

⋃
k Ak = M. In other terms, the clusters collection

is a ‘finite partition’ of M. The subsets {Ak} of a partition are often referred to as its ‘atoms’.
Let Z(M) denote the set of all finite partitions of M. The correspondence � : C → Z between
a configuration a ∈ C and the clusters partition α ≡ (A1, . . . , AN) ∈ Z , i.e., α = �(a), is
‘many to one’, since configurations generated by permutations in K are mapped into the same
partition. If the cardinality of the alphabet is |K| � 4, because of Euler’s four colour theorem
for every partition α ∈ Z there exist a ∈ C with α = �(a). This is not true for the case
K = {0, 1} considered in the present work.

A probability measure µ may be introduced in the algebra M of subsets of M: for every
A ∈ M, µ(A) is the normalized number of knots in A. Standard operations on partitions may
be recovered in classical textbooks such as [14–16], or, for our demands, in [10, 12]. Here,
we only recall the definition of Shannon entropy and Rohlin distance: let α = (A1, . . . , AN)

be a partition: its Shannon entropy H(α) is

H(α) = −
N∑

i=1

µ(Ai) ln µ(Ai). (A2)

Note that the Shannon entropy depends only on the cluster measures, not on their shapes.
Shapes are taken into account by conditional entropy: if β = (B1, . . . , BM) is another partition,
the conditional entropy of α with respect to β is

H(α|β) = −
N∑

i=1

M∑
k=1

µ(Ai ∩ Bk) ln
µ(Ai ∩ Bk)

µ(Bk)
, (A3)
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and the Rohlin distance dR is

dR(α, β) = H(α|β) + H(β|α). (A4)

This way, Z(M) is a metric space. The Rohlin distance between two finite partitions expresses
how different they are. We also recall that there exists a method, called ‘reduction process ’, to
amplify as far as possible the non-similarity between partitions. This method is reminiscent of
cancellation of common factors between integers, justifying the concept of ‘rational partitions’
introduced in this context [10, 11]. However, for the model studied in the present work, the
reduction process proves to be unimportant, and we shall disregard on it.

Hamming and Rohlin distances are not directly comparable. We stress that the Hamming
distance is between configurations and it is sensitive only to actual values of corresponding
knots, not to their distribution or neighbourhood, whereas the Rohlin distance is between
partitions, and therefore is sensitive to the cluster shapes. In principle, dR and dH may
give very different information. With the binary {0, 1} alphabet, for instance, complementary
configurations have maximal Hamming distance (dH = N), while the corresponding partitions
coincide (dR = 0).

If a configuration a ∈ C has discrete evolution a, T a, T 2a, . . . , one can speak of
‘configurations orbit’. The corresponding dynamics T̂ on Z is defined by

T̂ α = T̂ �(a) = �(T a) (A5)

so that to a configurations orbit there corresponds a partitions orbit. Clearly, the probability
measure µ in M is not preserved by the evolution, in the sense that clusters or atoms are
redefined at every step by the pointwise evolution, and do not evolve in themselves. However,
we are not interested here in such indicators as Kolmogorov–Sinai entropy or Lyapunov
exponents, requiring a preserved measure. Observables F are defined at each time in C(M) or
Z(M), and they give rise to ‘time series’ {xk} = {F(T ka)} or {xk} = {F(T̂ kα)}. Such time
series are the main objects of our investigations. Typically, we shall consider

• xk = H(T̂ k(α)), i.e., the entropy time series;
• xk = dR(T̂ k(α), T̂ k−1(α)), i.e., the Rohlin distance time series;
• xk = dH (T k(a), T k−1(a)), i.e., the Hamming distance time series.

This formalism applies in principle to every kind of lattice and discrete dynamics, and could
be easily extended to graphs. However, a computational obstacle consists in the necessity of
handling the cluster borders, a difficult task for large lattice sizes (and even more in dimension
d > 2).
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